THE STRONG TREE PROPERTY AND THE FAILURE OF
SCH

JIN DU

ABSTRACT. Fontanella [2] showed that if (k, : n < w) is an increas-
ing sequence of supercompacts and v = sup,, kn, then the strong tree
property holds at . Building on a proof by Neeman [7], we show that
the strong tree property at ' is consistent with ~SCH,,, where & is
singular strong limit of countable cofinality.

1. INTRODUCTION

The tree property at a regular cardinal s, denoted T Py, states that every
k-tree of height x and levels of size < x has an unbounded branch. When
K is inaccesible, T' Py is equivalent to weak compactness of k. A major open
project in set theory is obtaining the tree property at as many small regular
cardinals as possible. This tests how much compactness a universe of set
theory can have. Classical results by Konig[4] and Aronszajn[6] respectively
show that TPy, holds and TPy, fails. Specker[12] generalized Aronszajn’s
result to show that if k<% = k, then TP+ fails. In particular, if  is singular
strong limit, then TP, ++ requires -SCH,.

A major open project is consistently obtaining the tree property at many
small cardinals. This tests the power of forcing and large cardinals to build
universes with a high level of compactness. One of the best known re-
sults is due to Neeman[8], who showed that T'Py_ can consistently hold for
a € [2,w) U {w + 1} simultaneously with X, strong limit. An open question
is whether this can be extended to include T'Py,,,. By Specker’s Theorem,
a necessary condition would be obtaining the tree property at N,4; with
—SCHy,. That problem is also open. However, Sinapova and Unger|[11]
have shown that the tree property can consistently hold at the successor
and double successor of a singular strong limit cardinal.

Just as the tree property captures the “essence” of weakly compact cardi-
nals, the strong and super tree properties respectively capture the “essence”
of strongly and super compact cardinals: when « is inaccessible, x is strongly
compact iff it has the strong tree property, and supercompact iff it has the
super tree property. The strong and super tree properties are defined in
terms of P, (A)-lists, which were first studied by Jech and Magidor, and
later by Weiss[14]. Fontanella[2] found equivalent characterizations in terms
1
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of (k, A)-trees. This paper will use her characterization of the strong tree
property.

In this paper, f|X will denote the restriction of the function f to the set X,
where dom(f) D X.

Definition 1. A (k, A)-tree is a set F' satisfying the following:

(1) For every f € F, f: X — 2 for some X € [A]<F

(2) Forall f € F, if X C dom(f), then f|X € F

(3) For all X € [\|<F, Levx(F) :={f € F:dom(f) =X} #0

(4) For all X € [N<", |Levx(F)| < k
An unbounded branch through F is a function b: X — 2 such that for every
X € [N<F, b|X € Levx (F).

TP(k,\) holds if every (k,\)-tree has an unbounded branch. The strong
tree property holds at k if TP(k,\) holds for all A > k.

Even more challenging than the project of obtaining the tree proparty at
many small regular cardinals is obtaining the strong tree property at many
small regular cardinals. Fontanella[3] and Unger[13] independently showed
that a model due to Cummings and Foreman|[1] has the super tree property
at N, for n > 2. Fontanella[2] showed that the strong tree property can
consistently hold at N, 1. In the setting of X, strong limit, a good improve-
ment on this result would be consistently obtaining the strong tree property
at N,41 and N,49. As in the tree property case, a necessary requirement
would be obtaining the strong tree property at N1 with ~SCHy,.

In this paper, building on an argument due to Neeman[7], we answer the
question just stated when R, is replaced by some singular strong limit car-
dinal of countable cofinality. Specifically, we prove the following:

Theorem 1. Assuming the consistency of w-many supercompacts (ky, : n <
w), if v = sup,, kn, then there is a model where kg is strong limit, ~SC Hy,
and the Strong Tree Property holds at /iar .

2. THE FORCING

Start with Vo F GCH, (k,, : n < w) supercompacts and v = sup,, k. Our
construction will be as follows:

e Perform Laver preparation to make k¢ indestructible with respect to
A = Add(kg,vtT); call this model V.
e Force with A. Let E be generic for A over V; call the resulting model
V[E].
In V[E], we use the following poset due to Neeman[7]: let U be a normal
measure on Py, (v") and U, be the projection of U on to Py, (k). For sets
of ordinals = and y, write x < y if z C y and ot(x) < ko Ny, where ot(x)
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is the order type of x. Let P be the following variant of Gitik-Sharonl[5]
forcing: conditions are of the form (xg, ..., zp—1, An, Ant1,...) where

e I; € P,io(/*ii), T < Tiq1

e AjcU;and 2,1 <y forally € A,

We require that kg N x; is inaccessible.

Given a condition p = (xq, ..., Tn—1, An, Apt1, -..), let stem(p) = (xg, ..., Tp—1).
If his a stem, ¢(x1,...,Z) is a formula and ay, ...a,, are parameters, we
write h IF* o(d1, ..., ap,) if there is a condition p with stem(p) = h such that

plEo(di, ..., am).

1 AL, ., we say p < g if
m§n,xf=x?f0ri<m,foA?form§i<nandAfCA?forizn.
As noted by Neeman, [P satisfies the Prikry Property.

If p= (af,..2l_ A}, ) and ¢ = (z,..2¥

Let G be P-generic over V[E]. Then in V[E][G], every k, is collapsed to kg
and (vT)VIFl is the new successor of xg. We will write v+ for (v+)VIF] and
likewise for v 7.

As noted by Neeman[7], V[E][G] F 2% = k{ T, kg strong limit.

Our main task will be to show that V[E][G] E TP(vt,\) for all A > v+,
Since it is enough to do this for unboundedly many A\, we may assume
A” = A. The argument closely follows Neeman’s[7].

3. THE STRONG TREE PROPERTY AT v

Let F € V[E][G] bea (v, A)-tree and for each X € [A]<¥" let {7 Yicieox (7))
be an enumeration of Levx (F') with |Levx (F)| < k. Let j : V[E] — M be
a A-supercompact embedding with critical point xg.

We point out that ([A]<*")VIE £ (IN<*")VIEIC], However, ([\]<")VIEl =
(IN<"")M because M contains all V[E]-sets of size < \.

Club subsets of [A\]<*" in V[E]|G] satisfy the following covering property:

Lemma 1. Let g IF K C [N<" is a club. Then there is a club C € V[E]
such that g I- C C K.

Proof. Let C = {X € \<“" : ¢ IF X € K}. Clearly C € V|[E] and
VIE)[G] E C Cc Kg. It remains to show that C is club. If 7 < vF
and (X, : a@ < 7) is an increasing sequence of elements of C, then since
glF K is club and ¢ I+ X, € K for all o, ¢ IF Ua Xa € K, ie. Uy Xa € C.

So C is closed. Let Xy € [A]<¥" be arbitrary. We will construct an in-
creasing sequence (X,, : n < w) such that X = (J,, X;,, € C. Assuming that
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we have constructed X, let A C {p < ¢:3X 2 X,(pIF X € K)} be an
antichain maximal with respect to all such antichains.

Let G/ be a generic filter containing ¢. Since ¢ I K is unbounded, G'NA # 0.

Since PP has the v -chain condition, |A| < v. For each p € A, let X,, be such
that p - X, € K. Then Xn i1 = Upey Xp D Xy € A<

Now by construction, for any generic G’, there is (Y, : n < w) with X,, C
Y,, C Xp41 such that V[E][G'] £ Y, € Kg. Since U, Y, = U, X = X,
V[E][G'| E X € K¢ Finally, since G’ was arbitrary, ¢ IF X € K. So C is
unbounded. (]

As an immediate consequence, we see that ([A\]<” +)V[E} is stationary in
(IN<*")VIEIC], From now on, [A]<*" will mean ([]A]<*")VE] unless otherwise
specified.

We will also need the following approximation property.

Definition 2. Let G be generic for P over V and k be a cardinal in V[G].
We say that P has the k-approzimation property if for every A € V[G] such
that AND €V for every |D| <k, A€V.

Claim 2. j(A)/FE has the v*-approzimation property.

Proof. j(A) is kg -Knaster, hence j(A)x j(A) has the k& -c.c. Then j(A)/E x
j(A)/E also has the g -c.c., and in particular the vT-c.c. By a lemma due
to Unger[13], j(A)/E has the vT-approximation property. O

Lemma 3. 3n3S C [N<" stationary in V|E) such that for all X,Y € S,
3¢, n < koIp € P with length(p) = n such that p I+ fCX\(XﬂY) = f;ﬂ(XﬁY).

Proof. j(F) is a j(P)-name for a (j(v™),5()\))-tree. Let G* be M-generic
for j(P). Then j(F)g~ is a (j(v), j(A\))-tree. Write f¥ for the i*® node on

the XM level of j(F)g-.

Let Z = U{j(X) : X € N<“"}. Z € M because \¥ = X and M is
closed under A-sequences. Since the size of each j(X) is less than j(v™),
|Z| < j(v)-A = j(v). Furthermore, M C M[G*]. So Z € ([j(\)]</¢ MG,
Take u a node on the Z*" level of j(F)q-.

For each X € [NJ<*", Z D j(X), so in M[G*], u|j(X) is a node on the
F(X)™ level. Let py € G* be such that px IF ulj(X) = fgi(X) for some
(x < j(ko) and nx = length(px). The function X — nx (X € [\]<")
can be defined in M[G*], it’s domain is a stationary subset of ([\]<*")MIG"],
Since v+ remains regular in M|[G*], we may find stationary S* C [\]<*" in
M[G*] such that nx = n on S* for some constant n. Compatible conditions
of the same length must have the same stem; so let h be the common stem
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of all px such that X € §*.

Define in M, S = {X € [N]<*" : 3p € j(P)(stem(p) = h A 3 < j(ro)(p IF
ulj(X) = 'C*j(X)))}. Clearly, S D S* as witnessed by px for each X € S.
So S is stationary. If X,Y € S as witnessed by px,(x and py,(y re-
spectively, then px A py forces f;i(X) and fzg(y) to be restrictions of u,

hence px A py IF fg*i(X)U(X) NjiY) = .Zi(Y)’j(X) N j(Y). Note that
length(px A py) = n.

Now for any X,Y € S, we have: '

M E 3¢ < j(ko)3p € j(P)(length(p) = nAp IF f7OLi(X) nj(Y) =
7 (Y) . .

HOX) NG(Y))

By elementarity: ' '
VIE]F 3¢, n < kodp € P(length(p) = nAp I- fE(XNY) = fY|(XNY)) O

Let n be as in Lemma 3. Let j; : V — N be a A-supercompactness
embedding with crit(j1) = kpy1. Then ji(A) = Add(kg,j1(vT)). Let E’
be generic for jj(A) over N containing j;”E. We can then lift j; to an
embedding from V[E] to N[E'], which we will continue to denote by jj.

Lemma 4. 3T C [\|<¥" stationary in V|E], a stem h of length n and for
each X € T an ordinal Cx < Ko such that for all X,Y €T, there is p with
stem h such that p IF fé{|(XﬂY) = fg/|(XﬂY).

Proof. Proceeding as in the proof of Lemma 3, let Z' = [J{j1(X) : X €
A<} € N[E']. Since j,(8) is stationary in [j1(A)]</'*") it is unbounded,
so let Z € j1(S) with Z D Z'. By Lemma 3 and elementarity of ji,
in N we find for all X*,Y* € ji(5), 3(,n < ko and p € ji(P) with
length(p) = n such that p I- jl(f)é( (X*NY*) = jl(f)}?/*](X* NY*). In
particular, for any X € S, taking X* = j;(X), Y* = Z and noting that
Z D j1(X), we can find px € j1(P) of length n and (x,nx < ko such
that px I- jl(fg)(() = jl(f)gx|j1(X). Let hx be the stem of px. Then
X — (hx,nx) is a map from a set of size A (namely S), to a set of size
kn (namely {s: s is a stem of length n} x ko). Let T'C S be stationary on
which this map is constant. Letting (h,7) be the constant, we have for any
XY €T, px Apy IF j1(fE)0G1(X) N (Y)) = 51(HF 1 (X) N (V) =
AFNG(X) N1 (Y)). Tt follows that for any X,Y € T,

NIE'TE 3p € j1(P)(stem(p) = hAp I j1(fE) (1 (X)N71(Y)) = 71 (fE)] G (XN
J1(Y)))

By elementarity, and noting that h, (x, (y are below the critical point of ji,
VIE] E 3p € P(stem(p) = h Ap k- fE (X NY) = fEI(XNY))

Note that T € V[E][E’] because j; is defined in V[E|[E’]. However, since

T C S,every X € Tisin V[E]. To complete the proof of the lemma, we must
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show that T € V[E]. By Claim 2, it is enough to show that TN D € V[E]
whenever D c [\|<*", |D| < v*.

Let D be as above. Since |JD € [\|<*" and T is unbounded, let Y € T
with Y D |JD. Let X € SN D. From the above, we see that if X € T,
then (3()h IH* fg( = fg;\X Conversely, suppose (3¢)h IH* fCX = fg;|X
By elementarity, N[E'] E h IF* jl(fg() = jl(fg/)‘j1<X> for some (. From
the above, we have h IF* jl(fé;) = jl(f)§|j1(Y). Hence h IH* jl(fCX) =

AF(X) = j1(HZ]j1(X). So (x = ¢, hx = h and nx = 7. Tt follows
that X € T.

In conclusion, TN D ={X € SND: (A)h - f& = fL|X}eV[E. D

From now on, we may assume the function X — (x (X € T) is in V[E].
Call this function g.

Lemma 5. Let h O h have length k and T" C T be stationary in V[E]
such that YX,Y € T" h I-* fg{ (XNnY) = fg;](X NY). Then there is a
club Cy, and up, : Cp, N T — Uy such that whenever X, Y € TN Cy, and
z € up(X) Nup(Y), Wz - fEI(XNY) = fEI(XNY).

Proof. Let jo : V. — N’ be as before Lemma 4, except crit(j2) = kpi1 and
7 : V[E] = N'[E"] be alift. Let Z € n(T") with Z > {n(X): X € [\]|<"}
and € = 7(g)z. Then ZNw(X) = n(X) for any X € [N\]<*".

Claim 6. There is v : T" — m(Ug) in V[E][E"] such that for all X € "
and z € v(X), h ~x IF* W(fé{) = w(f)EZ]w(X)

Proof. By elementarity of m and noting that w(h) = h, for all X*,Y* €

7(T"), hIF* w(f)f(*g)x* (X*NY*) = w(f)}:(;)y* (X*NY™*). Let X* = n(X)

and Y* = Z. Then we have a condition rx € 7(P) with stem h such
(X ¢ r

that ry I+ ”(f)wgm)wm = ﬂ(f)f(g)z\ﬂ(X). Let v(X) = AX. Then for

any z € v(X), we can choose a condition with stem h ~ x extending rx.

Since ﬁ(f):%i(x) = w(fgf(), this condition will witness h ~ z I-* W(fg() =

(/)¢ |m(X). O
For each € Py (ki), let T, = {X € T" : h ~ z IF* w(fé() =

() Im(X)} € VIE][E"].

Claim 7. If T, is unbounded, then it is in V[E].

Proof. Let D = {X; : i < 7} with 7 < v*. Since T, is stationary, and
in particular unbounded, there is X € T, such that X > (J,_. X;. By

definition, h ~ z IF* ﬂ(fé{) = 7r(f)5|7r(X) For each ¢ < 7, we then get
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ho~ I (fE)Im(Xa) = 7 (F)E m(X5).
Xi €Ty <= hralw(f) =n(f)fIn(X)
= hoalen(f8) =n(fE)Im(X)
x £Xi _ fX |y
< h~zl- fCXi = fcx’X{ .
So Ty|D ={X;:h ~xI-* fCXX’ = fé(|Xl} € V[E]. By the approximation
property, it follows that T, € V[E]. O

Claim 8. If X,Y €Ty, then h ~z - fE X nY = fY|XNnY.

Proof. We have h ~ x I w(f&) = n(/)Z|x(X) and h ~ = I 7(f) =
W(f)gz‘ﬂ’(Y) So h ~ x IF* 7r(f)52|7r(X) Nn(y) = w(fé{)hr(X) Nn(y) =
W(fg;)\w(X)ﬂﬁ(Y). By elementarity, h ~ = IF* fé{ IXNY = f2;|XﬂY. O

In V[E], define K, = {C C T" : C is stationaryA3q € Add(kg, j2(A1))(q IF
T, = C)}. Then for any C € K,, C can be T, so by Claim 8, if X,Y € C,
then h ~ x IF* f£(|X Ny = fg;|X NY. Furthermore, suppose C,C’ € K,
and C # C’. Let X belong to one but not the other. For any Y D X, if
Y e ONC’, then X € CNC’, which is impossible. So C and C’ are disjoint
on {Y:Y > X}.

For each z € Py (ki) and distinct C,C" € K, let X, c.cr € [A]<¥" be such
that C' and C” are disjoint above X, ¢ ¢. There are only r;-many such  and
| K| < ko since Add(ko, j(AT)) has the k-c.c. So X" := Uscor Xacor €
A<, Now for every & € Py (k) and every X D X" in [\]<*", there is
at most one C' € K, such that X € C. Let f(z,X) be the unique C € K,
such that X € C if it exists, leaving f(z, X) undefined otherwise. Note that
feVIE]

Claim 9. Let X D X" be in [N<". Then {x € Pu, (k) : f(x,X) is defined} €
Ug.

Proof. Towards a contradiction, suppose X = {z € Py, (k) : f(z, X) is undefined} €
Uy. Recall from Claim 6 that for every Y € T", there is v(Y) € n(Uy) such

that whenever z € v(Y), h ~ z IF* W(fg/) = W(f)gZ’TF(Y) Since X is below

cit(n), X € n(Uy) <= 7(X) € n(Uy) <= X € Uy, which we have
assumed is the case. For each Y € T" v(X)Nv(Y)NX € 7(Uy), so let zy

be in this intersection. There are only kp-many possible values of xy and
stationarily many choices for Y. So there must be T" C T" stationary such

that xty =z for Y € T" for some z.

Since z € v(X), h ~ x IF* W(fg)(() = F(f)?’ﬂ'(X) By definition, X € T}.
Similarly, for every Y € T, z € v(Y) and hence Y € Tj,. So T, con-
tains a stationary set, hence is stationary. By Claim 7, T,, € V[E]. But
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then ~Tz € K, (as witnessed by the empty condition). On one hand, since
x € X, f(z,X) is undefined. On the other hand, X € T, and T, € K, so
f(z,X) =T,. This is a contradiction. O

Claim 10. Let X, X' D X" be in [N|<". Then {x € Py, (ky) : f(z,X) =
f($7X/)} € Uk-

Proof. Towards a contradiction, suppose X = {x € Py, (ki) : f(z, X) #
f(z,X")} € Ug. We use the same argument, except we take for each Y €
T, zy € v(X) No(X)Nov(Y)N X. This time we get X, X’ € T, while
T, € K,. On one hand, since z € X, f(z,X) # f(x,X’). On the other
hand, X, X' € T, NT, € K, = f(z,X) = f(z,X') = T,, which is a
contradiction. U

We are finally ready to finish the proof of Lemma 5. Let Xy D X" be in
Th. Our club will be Cj, = {X € [A|<*" : X > X"}. For X € C, N T",
we will use uy,(X) = A% = {z € Py (ki) : f(z, Xo) is defined A f(z,X) =
f(z, Xp)}. By Claims 9 and 10, A’}{ € Uy. Suppose X,Y € T"NCy, and z €
At N AL, Then f(z,X) = f(2,Y) = f(z,X0) € K; and X,Y € f(z, Xo).
Since f(x,Xo) = C for some C € K, X NY € f(x, Xp). From the remarks
after Claim 8, it follows that h ~ z IF* fX (X NY) = f¥ [(X NY). O

Lemma 11. There is S C <" stationary, conditions (px : X € S) with
stem(px) = h and ordinals ((x : X € S) such that whenever X,Y € S,
px Apy IF fEI(XNY) = fLI(XNY).

Proof. We will define a decreasing sequence of clubs (Cyx : k > n) and
AX € Uy, for X € Cy, together with the convention Cj,_1 = [)\]<”+. Each
px will be of the form <B,A§,A§+1, ...). Assuming that A has been de-
fined for n < i < k, for any h D h with length(h) = k, let Th := {X € T :
X € Cy_1 A (Vi € [n,k))h(i) € AX}.

Our induction hypothesis will be the following: for every k > n, if X,Y €
CeNT and h = h ~ g, with § = (Yn, -.yx_1),¥ € AX N AY, then T" is
stationary and Vz € AX N AY with h < 2, we have h ~ z I-* f§{|(X ny) =
fEIXNY).

For k =n, Th =T. By Lemma 4, this satisfies the hypothesis of Lemma 5.
Let AX = uz(X). By Lemma 5, this is as required. Let C,, = Cj as from
Lemma 5.

Now assume we have done the construction for n < i < k and let h D h have
length k. If T" is nonstationary, let C}, be a club disjoint from T". If T"
is stationary, then by the induction assumption, the hypotheses of Lemma
5 are satisfied. Let Cj, and A% := u,(X) be as in the conclusion. Take
Cr =), Ch and AX = AhA]}(, with the intersections taken over all h D h
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of length k.

We must verify that the induction hypothesis still holds. Let X, Y € C,NT
and h = h ~ g, with § = (yn,..ys—1),vi € AX N AY. First note that
X,Y € T" by definition. Since § # C, NT" c C, N T", T" must be
stationary. For any z € Ai( N AkY with h < z, z € Ag‘( N A}{/ by definition
of diagonal intersection. By Lemma 5, h ~ z [F* fé{|(XﬂY) = f2;|(XﬂY).

Having completed t}}e inductive construction, let S = TN i Ok and for each
X €8, let px = (h, A, AX,,...). We will next show that for X,Y € §
fixed, D := {q < px APy i q I+ fg(\(X'ﬂ Y) = fg;](X NY)} is dense. That
will imply, px Apy IF fE (X NY) = fE (X NY).

Let p < px Apy. Then p = (h,yn, .. Yr—1, Ak, Apt1,-..) with y; € AF N AY
forn <i < kand A; C AZX N AlY for i > k. Let ¥ = (yn, ..., Yk—1). Since
XY € CpNT, if we take z € A with h < z, by our inductive construction,
h~y~zIF* fé;\(X ny) = fg;|(X NY). Let g be a witness. After inter-
secting each A? with A; for i > k, we may assume without loss of generality
g <p. Then q € D. [l

We are finally ready to complete the proof that F' has an unbounded
branch.

Let B ={X € S :px € G}. We will show that B is stationary. Sup-
pose not. Then there is a club €' € V[E][G] and ¢ € G such that ¢ IF
C'isclubA BN C' = 0. Applying Lemmas 3 and 4 densely below ¢ then
strengthening ¢ if necessary, we may assume stem(q) = h. By Lemma 1,
there is a club C' € V[E] such that ¢ - BNC = 0. Let X € SN C. Then
stem(px) = stem(q). Taking r a common extension of px and ¢, we have

r Ik BN C = 0, which implies r IF X ¢ B. But then r I+ px ¢ G, which is
impossible.

Let b = [ J{ fgf( : X € B}. Then this is an unbounded branch as required,
completing the proof.

4. OPEN PROBLEMS

Problem 1. Can we consistently obtain the strong tree property at k™ with
K strong limit and ~SCH, for k = N2 ? How about kK = N, ?

We may attempt to bring x down to a small cardinal by adding interleaved
collapses to the forcing. Unfortunately, this does not work at Kk = R, because
doing so adds a weak square sequence[10], which implies the failure of the
tree property. However, this may work at k = N 2.
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Problem 2. Can we consistently obtain the strong tree property at k* and
kT with k strong limit? If so, can we bring this result down to k = W 2 ?
How about k = N, ?

The answer to the first two questions is yes for the tree property. See [9]
and [11].
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