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Abstract. Fontanella [2] showed that if 〈κn : n < ω〉 is an increas-
ing sequence of supercompacts and ν = supn κn, then the strong tree
property holds at ν+. Building on a proof by Neeman [7], we show that
the strong tree property at κ+ is consistent with ¬SCHκ, where κ is
singular strong limit of countable cofinality.

1. Introduction

The tree property at a regular cardinal κ, denoted TPκ, states that every
κ-tree of height κ and levels of size < κ has an unbounded branch. When
κ is inaccesible, TPκ is equivalent to weak compactness of κ. A major open
project in set theory is obtaining the tree property at as many small regular
cardinals as possible. This tests how much compactness a universe of set
theory can have. Classical results by König[4] and Aronszajn[6] respectively
show that TPℵ0 holds and TPℵ1 fails. Specker[12] generalized Aronszajn’s
result to show that if κ<κ = κ, then TPκ+ fails. In particular, if κ is singular
strong limit, then TPκ++ requires ¬SCHκ.

A major open project is consistently obtaining the tree property at many
small cardinals. This tests the power of forcing and large cardinals to build
universes with a high level of compactness. One of the best known re-
sults is due to Neeman[8], who showed that TPℵα can consistently hold for
α ∈ [2, ω)∪ {ω + 1} simultaneously with ℵω strong limit. An open question
is whether this can be extended to include TPℵω+2 . By Specker’s Theorem,
a necessary condition would be obtaining the tree property at ℵω+1 with
¬SCHℵω . That problem is also open. However, Sinapova and Unger[11]
have shown that the tree property can consistently hold at the successor
and double successor of a singular strong limit cardinal.

Just as the tree property captures the “essence” of weakly compact cardi-
nals, the strong and super tree properties respectively capture the “essence”
of strongly and super compact cardinals: when κ is inaccessible, κ is strongly
compact iff it has the strong tree property, and supercompact iff it has the
super tree property. The strong and super tree properties are defined in
terms of Pκ(λ)-lists, which were first studied by Jech and Magidor, and
later by Weiss[14]. Fontanella[2] found equivalent characterizations in terms
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of (κ, λ)-trees. This paper will use her characterization of the strong tree
property.

In this paper, f |X will denote the restriction of the function f to the set X,
where dom(f) ⊃ X.

Definition 1. A (κ, λ)-tree is a set F satisfying the following:

(1) For every f ∈ F , f : X → 2 for some X ∈ [λ]<κ

(2) For all f ∈ F , if X ⊂ dom(f), then f |X ∈ F
(3) For all X ∈ [λ]<κ, LevX(F ) := {f ∈ F : dom(f) = X} 6= ∅
(4) For all X ∈ [λ]<κ, |LevX(F )| < κ

An unbounded branch through F is a function b : λ→ 2 such that for every
X ∈ [λ]<κ, b|X ∈ LevX(F ).

TP (κ, λ) holds if every (κ, λ)-tree has an unbounded branch. The strong
tree property holds at κ if TP (κ, λ) holds for all λ ≥ κ.

Even more challenging than the project of obtaining the tree proparty at
many small regular cardinals is obtaining the strong tree property at many
small regular cardinals. Fontanella[3] and Unger[13] independently showed
that a model due to Cummings and Foreman[1] has the super tree property
at ℵn for n ≥ 2. Fontanella[2] showed that the strong tree property can
consistently hold at ℵω+1. In the setting of ℵω strong limit, a good improve-
ment on this result would be consistently obtaining the strong tree property
at ℵω+1 and ℵω+2. As in the tree property case, a necessary requirement
would be obtaining the strong tree property at ℵω+1 with ¬SCHℵω .

In this paper, building on an argument due to Neeman[7], we answer the
question just stated when ℵω is replaced by some singular strong limit car-
dinal of countable cofinality. Specifically, we prove the following:

Theorem 1. Assuming the consistency of ω-many supercompacts 〈κn : n <
ω〉, if ν = supn κn, then there is a model where κ0 is strong limit, ¬SCHκ0

and the Strong Tree Property holds at κ+
0 .

2. The Forcing

Start with V0 � GCH, 〈κn : n < ω〉 supercompacts and ν = supn κn. Our
construction will be as follows:

• Perform Laver preparation to make κ0 indestructible with respect to
A = Add(κ0, ν

++); call this model V .
• Force with A. Let E be generic for A over V ; call the resulting model
V [E].

In V [E], we use the following poset due to Neeman[7]: let U be a normal
measure on Pκ0(ν+) and Un be the projection of U on to Pκ0(κn). For sets
of ordinals x and y, write x ≺ y if x ⊂ y and ot(x) < κ0 ∩ y, where ot(x)



THE STRONG TREE PROPERTY AND THE FAILURE OF SCH 3

is the order type of x. Let P be the following variant of Gitik-Sharon[5]
forcing: conditions are of the form 〈x0, ..., xn−1, An, An+1, ...〉 where

• xi ∈ Pκ0(κi), xi ≺ xi+1

• Ai ∈ Ui and xn−1 ≺ y for all y ∈ An
We require that κ0 ∩ xi is inaccessible.

Given a condition p = 〈x0, ..., xn−1, An, An+1, ...〉, let stem(p) = 〈x0, ..., xn−1〉.
If h is a stem, ϕ(x1, ..., xm) is a formula and a1, ...am are parameters, we
write h ∗ ϕ(ȧ1, ..., ˙am) if there is a condition p with stem(p) = h such that
p  ϕ(ȧ1, ..., ˙am).

If p = 〈xp0, ...x
p
n−1, A

p
n, ...〉 and q = 〈xq0, ...x

q
m−1, A

q
m, ...〉, we say p ≤ q if

m ≤ n, xpi = xqi for i < m, xpi ∈ A
q
i for m ≤ i < n and Api ⊂ Aqi for i ≥ n.

As noted by Neeman, P satisfies the Prikry Property.

Let G be P-generic over V [E]. Then in V [E][G], every κn is collapsed to κ0

and (ν+)V [E] is the new successor of κ0. We will write ν+ for (ν+)V [E] and
likewise for ν++.

As noted by Neeman[7], V [E][G] � 2κ0 = κ++
0 , κ0 strong limit.

Our main task will be to show that V [E][G] � TP (ν+, λ) for all λ ≥ ν+.
Since it is enough to do this for unboundedly many λ, we may assume
λν = λ. The argument closely follows Neeman’s[7].

3. The Strong Tree Property at ν+

Let F ∈ V [E][G] be a (ν+, λ)-tree and for eachX ∈ [λ]<ν
+

let {fXi }i<|LevX(F )|
be an enumeration of LevX(F ) with |LevX(F )| ≤ κ. Let j : V [E] → M be
a λ-supercompact embedding with critical point κ0.

We point out that ([λ]<ν
+

)V [E] 6= ([λ]<ν
+

)V [E][G]. However, ([λ]<ν
+

)V [E] =

([λ]<ν
+

)M because M contains all V [E]-sets of size ≤ λ.

Club subsets of [λ]<ν
+

in V [E][G] satisfy the following covering property:

Lemma 1. Let q  K̇ ⊂ [λ]<ν
+

is a club. Then there is a club C ∈ V [E]

such that q  C ⊂ K̇.

Proof. Let C = {X ∈ [λ]<ν
+

: q  X ∈ K̇}. Clearly C ∈ V [E] and

V [E][G] � C ⊂ K̇G. It remains to show that C is club. If τ < ν+

and 〈Xα : α < τ〉 is an increasing sequence of elements of C, then since

q  K̇ is club and q  Xα ∈ K̇ for all α, q 
⋃
αXα ∈ K̇, i.e.

⋃
αXα ∈ C.

So C is closed. Let X0 ∈ [λ]<ν
+

be arbitrary. We will construct an in-
creasing sequence 〈Xn : n < ω〉 such that X =

⋃
nXn ∈ C. Assuming that
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we have constructed Xn, let A ⊂ {p ≤ q : ∃X ) Xn(p  X ∈ K̇)} be an
antichain maximal with respect to all such antichains.

LetG′ be a generic filter containing q. Since q  K̇ is unbounded, G′∩A 6= ∅.
Since P has the ν+-chain condition, |A| ≤ ν. For each p ∈ A, let Xp be such

that p  Xp ∈ K̇. Then Xn+1 =
⋃
p∈AXp ⊃ Xn ∈ [λ]<ν

+
.

Now by construction, for any generic G′, there is 〈Yn : n < ω〉 with Xn ⊂
Yn ⊂ Xn+1 such that V [E][G′] � Yn ∈ K̇G′ . Since

⋃
n Yn =

⋃
nXn = X,

V [E][G′] � X ∈ K̇G′ . Finally, since G′ was arbitrary, q  X ∈ K̇. So C is
unbounded. �

As an immediate consequence, we see that ([λ]<ν
+

)V [E] is stationary in

([λ]<ν
+

)V [E][G]. From now on, [λ]<ν
+

will mean ([λ]<ν
+

)V [E] unless otherwise
specified.

We will also need the following approximation property.

Definition 2. Let G be generic for P over V and κ be a cardinal in V [G].
We say that P has the κ-approximation property if for every A ∈ V [G] such
that A ∩D ∈ V for every |D| < κ, A ∈ V .

Claim 2. j(A)/E has the ν+-approximation property.

Proof. j(A) is κ+
0 -Knaster, hence j(A)×j(A) has the κ+

0 -c.c. Then j(A)/E×
j(A)/E also has the κ+

0 -c.c., and in particular the ν+-c.c. By a lemma due
to Unger[13], j(A)/E has the ν+-approximation property. �

Lemma 3. ∃n∃S ⊂ [λ]<ν
+

stationary in V [E] such that for all X,Y ∈ S,

∃ζ, η < κ0∃p ∈ P with length(p) = n such that p  ḟXζ |(X∩Y ) = ḟYη |(X∩Y ).

Proof. j(Ḟ ) is a j(P)-name for a (j(ν+), j(λ))-tree. Let G∗ be M -generic

for j(P). Then j(Ḟ )G∗ is a (j(ν+), j(λ))-tree. Write f∗Xi for the ith node on

the Xth level of j(Ḟ )G∗ .

Let Z =
⋃
{j(X) : X ∈ [λ]<ν

+}. Z ∈ M because λν = λ and M is
closed under λ-sequences. Since the size of each j(X) is less than j(ν+),

|Z| ≤ j(ν)·λ = j(ν). Furthermore, M ⊂M [G∗]. So Z ∈ ([j(λ)]<j(ν
+))M [G∗].

Take u a node on the Zth level of j(Ḟ )G∗ .

For each X ∈ [λ]<ν
+

, Z ⊃ j(X), so in M [G∗], u|j(X) is a node on the

j(X)th level. Let pX ∈ G∗ be such that pX  u̇|j(X) = ḟ
∗j(X)
ζX

for some

ζX < j(κ0) and nX = length(pX). The function X 7→ nX (X ∈ [λ]<ν
+

)

can be defined in M [G∗], it’s domain is a stationary subset of ([λ]<ν
+

)M [G∗].

Since ν+ remains regular in M [G∗], we may find stationary S∗ ⊂ [λ]<ν
+

in
M [G∗] such that nX = n on S∗ for some constant n. Compatible conditions
of the same length must have the same stem; so let h be the common stem
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of all pX such that X ∈ S∗.

Define in M , S = {X ∈ [λ]<ν
+

: ∃p ∈ j(P)(stem(p) = h ∧ ∃ζ < j(κ0)(p 

u̇|j(X) = ḟ
∗j(X)
ζ ))}. Clearly, S ⊃ S∗ as witnessed by pX for each X ∈ S.

So S is stationary. If X,Y ∈ S as witnessed by pX , ζX and pY , ζY re-

spectively, then pX ∧ pY forces ḟ
∗j(X)
ζX

and ḟ
∗j(Y )
ζY

to be restrictions of u̇,

hence pX ∧ pY  ḟ
∗j(X)
ζX

|j(X) ∩ j(Y ) = ḟ
∗j(Y )
ζY

|j(X) ∩ j(Y ). Note that

length(pX ∧ pY ) = n.

Now for any X,Y ∈ S, we have:

M � ∃ζ, η < j(κ0)∃p ∈ j(P)(length(p) = n ∧ p  ḟ
∗j(X)
ζ |j(X) ∩ j(Y ) =

ḟ
∗j(Y )
η |j(X) ∩ j(Y ))

By elementarity:
V [E] � ∃ζ, η < κ0∃p ∈ P(length(p) = n∧p  ḟXζ |(X∩Y ) = ḟYη |(X∩Y )) �

Let n be as in Lemma 3. Let j1 : V → N be a λ-supercompactness
embedding with crit(j1) = κn+1. Then j1(A) = Add(κ0, j1(ν++)). Let E′

be generic for j1(A) over N containing j1”E. We can then lift j1 to an
embedding from V [E] to N [E′], which we will continue to denote by j1.

Lemma 4. ∃T ⊂ [λ]<ν
+

stationary in V [E], a stem h̄ of length n and for
each X ∈ T an ordinal ζX < κ0 such that for all X,Y ∈ T , there is p with
stem h̄ such that p  ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ).

Proof. Proceeding as in the proof of Lemma 3, let Z ′ =
⋃
{j1(X) : X ∈

[λ]<ν
+} ∈ N [E′]. Since j1(S) is stationary in [j1(λ)]<j1(ν+), it is unbounded,

so let Z ∈ j1(S) with Z ⊃ Z ′. By Lemma 3 and elementarity of j1,
in N we find for all X∗, Y ∗ ∈ j1(S), ∃ζ, η < κ0 and p ∈ j1(P) with

length(p) = n such that p  j1(ḟ)X
∗

ζ |(X∗ ∩ Y ∗) = j1(ḟ)Y
∗

η |(X∗ ∩ Y ∗). In

particular, for any X ∈ S, taking X∗ = j1(X), Y ∗ = Z and noting that
Z ⊃ j1(X), we can find pX ∈ j1(P) of length n and ζX , ηX < κ0 such

that pX  j1(ḟXζX ) = j1(ḟ)ZηX |j1(X). Let hX be the stem of pX . Then

X 7→ 〈hX , ηX〉 is a map from a set of size λ (namely S), to a set of size
κn (namely {s : s is a stem of length n} × κ0). Let T ⊂ S be stationary on
which this map is constant. Letting 〈h, η̄〉 be the constant, we have for any

X,Y ∈ T , pX ∧ pY  j1(ḟXζX )|(j1(X) ∩ j1(Y )) = j1(ḟ)Zη̄ |(j1(X) ∩ j1(Y )) =

j1(ḟYζY )|(j1(X) ∩ j1(Y )). It follows that for any X,Y ∈ T ,

N [E′] � ∃p ∈ j1(P)(stem(p) = h∧p  j1(ḟXζX )|(j1(X)∩j1(Y )) = j1(ḟYζY )|(j1(X)∩
j1(Y )))
By elementarity, and noting that h, ζX , ζY are below the critical point of j1,
V [E] � ∃p ∈ P(stem(p) = h ∧ p  ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ))

Note that T ∈ V [E][E′] because j1 is defined in V [E][E′]. However, since
T ⊂ S, everyX ∈ T is in V [E]. To complete the proof of the lemma, we must
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show that T ∈ V [E]. By Claim 2, it is enough to show that T ∩D ∈ V [E]

whenever D ⊂ [λ]<ν
+

, |D| < ν+.

Let D be as above. Since
⋃
D ∈ [λ]<ν

+
and T is unbounded, let Y ∈ T

with Y ⊃
⋃
D. Let X ∈ S ∩ D. From the above, we see that if X ∈ T ,

then (∃ζ)h ∗ ḟXζ = ḟYζY |X. Conversely, suppose (∃ζ)h ∗ ḟXζ = ḟYζY |X.

By elementarity, N [E′] � h ∗ j1(ḟXζ ) = j1(ḟYζY )|j1(X) for some ζ. From

the above, we have h ∗ j1(ḟYζY ) = j1(ḟ)Zη̄ |j1(Y ). Hence h ∗ j1(ḟXζ ) =

j1(ḟYζY )|j1(X) = j1(ḟ)Zη̄ |j1(X). So ζX = ζ, hX = h and ηX = η̄. It follows
that X ∈ T .

In conclusion, T ∩D = {X ∈ S ∩D : (∃ζ)h ∗ ḟXζ = ḟYζY |X} ∈ V [E]. �

From now on, we may assume the function X 7→ ζX (X ∈ T ) is in V [E].
Call this function g.

Lemma 5. Let h ⊃ h̄ have length k and T h ⊂ T be stationary in V [E]

such that ∀X,Y ∈ T h, h ∗ ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ). Then there is a

club Ch and uh : Ch ∩ T h → Uk such that whenever X,Y ∈ T h ∩ Ch and
x ∈ uh(X) ∩ uh(Y ), h∧x ∗ ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ).

Proof. Let j2 : V → N ′ be as before Lemma 4, except crit(j2) = κk+1 and

π : V [E]→ N ′[E′′] be a lift. Let Z ∈ π(T h) with Z ⊃ {π(X) : X ∈ [λ]<ν
+}

and ξ = π(g)Z . Then Z ∩ π(X) = π(X) for any X ∈ [λ]<ν
+

.

Claim 6. There is v : T h → π(Uk) in V [E][E′′] such that for all X ∈ T h
and x ∈ v(X), h a x ∗ π(ḟXζX ) = π(ḟ)Zξ |π(X).

Proof. By elementarity of π and noting that π(h) = h, for all X∗, Y ∗ ∈
π(T h), h ∗ π(ḟ)X

∗

π(g)X∗
|(X∗ ∩ Y ∗) = π(ḟ)Y

∗

π(g)Y ∗
|(X∗ ∩ Y ∗). Let X∗ = π(X)

and Y ∗ = Z. Then we have a condition rX ∈ π(P) with stem h such

that rX  π(ḟ)
π(X)
π(g)π(X)

= π(ḟ)Zπ(g)Z
|π(X). Let v(X) = ArXk . Then for

any x ∈ v(X), we can choose a condition with stem h a x extending rX .

Since π(ḟ)
π(X)
π(g)π(X)

= π(ḟXζX ), this condition will witness h a x ∗ π(ḟXζX ) =

π(ḟ)Zξ |π(X). �

For each x ∈ Pκ0(κk), let Tx = {X ∈ T h : h a x ∗ π(ḟXζX ) =

π(ḟ)Zξ |π(X)} ∈ V [E][E′′].

Claim 7. If Tx is unbounded, then it is in V [E].

Proof. Let D = {Xi : i < τ} with τ < ν+. Since Tx is stationary, and
in particular unbounded, there is X ∈ Tx such that X ⊃

⋃
i<τ Xi. By

definition, h a x ∗ π(ḟXζX ) = π(ḟ)Zξ |π(X). For each i < τ , we then get
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h a x ∗ π(ḟXζX )|π(Xi) = π(ḟ)Zξ |π(Xi).

Xi ∈ Tx ⇐⇒ h a x ∗ π(ḟXiζXi
) = π(ḟ)Zξ |π(Xi)

⇐⇒ h a x ∗ π(ḟXiζXi
) = π(ḟXζX )|π(Xi)

⇐⇒ h a x ∗ ḟXiζXi
= ḟXζX |Xi

So Tx|D = {Xi : h a x ∗ ḟXiζXi
= ḟXζX |Xi} ∈ V [E]. By the approximation

property, it follows that Tx ∈ V [E]. �

Claim 8. If X,Y ∈ Tx, then h a x ∗ ḟXζX |X ∩ Y = ḟYζY |X ∩ Y .

Proof. We have h a x ∗ π(ḟXζX ) = π(ḟ)Zξ |π(X) and h a x ∗ π(ḟYζY ) =

π(ḟ)Zξ |π(Y ). So h a x ∗ π(ḟ)Zξ |π(X) ∩ π(Y ) = π(ḟXζX )|π(X) ∩ π(Y ) =

π(ḟYζY )|π(X)∩π(Y ). By elementarity, h a x ∗ ḟXζX |X∩Y = ḟYζY |X∩Y . �

In V [E], defineKx = {C ⊂ T h : C is stationary∧∃q ∈ Add(κ0, j2(λ+))(q 
Ṫx = C)}. Then for any C ∈ Kx, C can be Tx so by Claim 8, if X,Y ∈ C,

then h a x ∗ ḟXζX |X ∩ Y = ḟYζY |X ∩ Y . Furthermore, suppose C,C ′ ∈ Kx

and C 6= C ′. Let X belong to one but not the other. For any Y ⊃ X, if
Y ∈ C ∩C ′, then X ∈ C ∩C ′, which is impossible. So C and C ′ are disjoint
on {Y : Y ⊃ X}.

For each x ∈ Pκ0(κk) and distinct C,C ′ ∈ Kx, let Xx,C,C′ ∈ [λ]<ν
+

be such
that C and C ′ are disjoint above Xx,C,C′ . There are only κk-many such x and

|Kx| ≤ κ0 since Add(κ0, j(λ
+)) has the κ+

0 -c.c. So Xh :=
⋃
x,C,C′ Xx,C,C′ ∈

[λ]<ν
+

. Now for every x ∈ Pκ0(κk) and every X ⊃ Xh in [λ]<ν
+

, there is
at most one C ∈ Kx such that X ∈ C. Let f(x,X) be the unique C ∈ Kx

such that X ∈ C if it exists, leaving f(x,X) undefined otherwise. Note that
f ∈ V [E].

Claim 9. Let X ⊃ Xh be in [λ]<ν
+

. Then {x ∈ Pκ0(κk) : f(x,X) is defined} ∈
Uk.

Proof. Towards a contradiction, suppose X̃ = {x ∈ Pκ0(κk) : f(x,X) is undefined} ∈
Uk. Recall from Claim 6 that for every Y ∈ T h, there is v(Y ) ∈ π(Uk) such

that whenever x ∈ v(Y ), h a x ∗ π(ḟYζY ) = π(ḟ)Zξ |π(Y ). Since X̃ is below

crit(π), X̃ ∈ π(Uk) ⇐⇒ π(X̃) ∈ π(Uk) ⇐⇒ X̃ ∈ Uk, which we have

assumed is the case. For each Y ∈ T h, v(X) ∩ v(Y ) ∩ X̃ ∈ π(Uk), so let xY
be in this intersection. There are only κk-many possible values of xY and
stationarily many choices for Y . So there must be T̃ h ⊂ T h stationary such
that xY = x for Y ∈ T̃ h for some x.

Since x ∈ v(X), h a x ∗ π(ḟXζX ) = π(ḟ)Zξ |π(X). By definition, X ∈ Tx.

Similarly, for every Y ∈ T̃ h, x ∈ v(Y ) and hence Y ∈ Tx. So Tx con-
tains a stationary set, hence is stationary. By Claim 7, Tx ∈ V [E]. But
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then Tx ∈ Kx (as witnessed by the empty condition). On one hand, since

x ∈ X̃, f(x,X) is undefined. On the other hand, X ∈ Tx and Tx ∈ Kx, so
f(x,X) = Tx. This is a contradiction. �

Claim 10. Let X,X ′ ⊃ Xh be in [λ]<ν
+

. Then {x ∈ Pκ0(κk) : f(x,X) =
f(x,X ′)} ∈ Uk.

Proof. Towards a contradiction, suppose X̃ = {x ∈ Pκ0(κk) : f(x,X) 6=
f(x,X ′)} ∈ Uk. We use the same argument, except we take for each Y ∈
T h, xY ∈ v(X) ∩ v(X ′) ∩ v(Y ) ∩ X̃. This time we get X,X ′ ∈ Tx while

Tx ∈ Kx. On one hand, since x ∈ X̃, f(x,X) 6= f(x,X ′). On the other
hand, X,X ′ ∈ Tx ∧ Tx ∈ Kx ⇒ f(x,X) = f(x,X ′) = Tx, which is a
contradiction. �

We are finally ready to finish the proof of Lemma 5. Let X0 ⊃ Xh be in

T h. Our club will be Ch = {X ∈ [λ]<ν
+

: X ⊃ Xh}. For X ∈ Ch ∩ T h,
we will use uh(X) = AhX := {x ∈ Pκ0(κk) : f(x,X0) is defined ∧ f(x,X) =

f(x,X0)}. By Claims 9 and 10, AhX ∈ Uk. Suppose X,Y ∈ T h∩Ch and x ∈
AhX ∩ AhY . Then f(x,X) = f(x, Y ) = f(x,X0) ∈ Kx and X,Y ∈ f(x,X0).
Since f(x,X0) = C for some C ∈ Kx, X ∩ Y ∈ f(x,X0). From the remarks

after Claim 8, it follows that h a x ∗ ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ). �

Lemma 11. There is S̄ ⊂ [λ]<ν
+

stationary, conditions 〈pX : X ∈ S̄〉 with
stem(pX) = h̄ and ordinals 〈ζX : X ∈ S̄〉 such that whenever X,Y ∈ S̄,

pX ∧ pY  ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ).

Proof. We will define a decreasing sequence of clubs 〈Ck : k ≥ n〉 and

AXk ∈ Uk for X ∈ Ck, together with the convention Cn−1 = [λ]<ν
+

. Each

pX will be of the form 〈h̄, AXn , AXn+1, ...〉. Assuming that AXi has been de-

fined for n ≤ i < k, for any h ⊃ h̄ with length(h) = k, let T h := {X ∈ T :
X ∈ Ck−1 ∧ (∀i ∈ [n, k))h(i) ∈ AXi }.

Our induction hypothesis will be the following: for every k ≥ n, if X,Y ∈
Ck ∩ T and h = h̄ a ȳ, with ȳ = 〈yn, ...yk−1〉, yi ∈ AXi ∩ AYi , then T h is

stationary and ∀z ∈ AXk ∩AYk with h ≺ z, we have h a z ∗ ḟXζX |(X ∩ Y ) =

ḟYζY |(X ∩ Y ).

For k = n, T h̄ = T . By Lemma 4, this satisfies the hypothesis of Lemma 5.
Let AXn = uh̄(X). By Lemma 5, this is as required. Let Cn = Ch̄ as from
Lemma 5.

Now assume we have done the construction for n ≤ i < k and let h ⊃ h̄ have
length k. If T h is nonstationary, let Ch be a club disjoint from T h. If T h

is stationary, then by the induction assumption, the hypotheses of Lemma
5 are satisfied. Let Ch and AhX := uh(X) be as in the conclusion. Take

Ck =
⋂
hCh and AXk = ∆hA

h
X , with the intersections taken over all h ⊃ h̄
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of length k.

We must verify that the induction hypothesis still holds. Let X,Y ∈ Ck ∩T
and h = h̄ a ȳ, with ȳ = 〈yn, ...yk−1〉, yi ∈ AXi ∩ AYi . First note that
X,Y ∈ T h by definition. Since ∅ 6= Ck ∩ T h ⊂ Ch ∩ T h, T h must be
stationary. For any z ∈ AXk ∩ AYk with h ≺ z, z ∈ AhX ∩ AhY by definition

of diagonal intersection. By Lemma 5, h a z ∗ ḟXζX |(X∩Y ) = ḟYζY |(X∩Y ).

Having completed the inductive construction, let S̄ = T∩
⋂
k Ck and for each

X ∈ S̄, let pX = 〈h̄, AXn , AXn+1, ...〉. We will next show that for X,Y ∈ S̄
fixed, D := {q ≤ pX ∧ pY : q  ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y )} is dense. That

will imply, pX ∧ pY  ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ).

Let p ≤ pX ∧ pY . Then p = 〈h̄, yn, ...yk−1, Ak, Ak+1, ...〉 with yi ∈ AXi ∩ AYi
for n ≤ i < k and Ai ⊂ AXi ∩ AYi for i ≥ k. Let ȳ = 〈yn, ..., yk−1〉. Since
X,Y ∈ Ck ∩T , if we take z ∈ Ak with h ≺ z, by our inductive construction,
h̄ a ȳ a z ∗ ḟXζX |(X ∩ Y ) = ḟYζY |(X ∩ Y ). Let q be a witness. After inter-

secting each Aqi with Ai for i > k, we may assume without loss of generality
q ≤ p. Then q ∈ D. �

We are finally ready to complete the proof that F has an unbounded
branch.

Let B = {X ∈ S̄ : pX ∈ G}. We will show that B is stationary. Sup-
pose not. Then there is a club C ′ ∈ V [E][G] and q ∈ G such that q 
Ċ ′ is club ∧ Ḃ ∩ Ċ ′ = ∅. Applying Lemmas 3 and 4 densely below q then
strengthening q if necessary, we may assume stem(q) = h̄. By Lemma 1,

there is a club C ∈ V [E] such that q  Ḃ ∩ C = ∅. Let X ∈ S̄ ∩ C. Then
stem(pX) = stem(q). Taking r a common extension of pX and q, we have

r  Ḃ ∩ C = ∅, which implies r  X /∈ Ḃ. But then r  pX /∈ G, which is
impossible.

Let b =
⋃
{fXζX : X ∈ B}. Then this is an unbounded branch as required,

completing the proof.

4. Open Problems

Problem 1. Can we consistently obtain the strong tree property at κ+ with
κ strong limit and ¬SCHκ for κ = ℵω2? How about κ = ℵω?

We may attempt to bring κ down to a small cardinal by adding interleaved
collapses to the forcing. Unfortunately, this does not work at κ = ℵω because
doing so adds a weak square sequence[10], which implies the failure of the
tree property. However, this may work at κ = ℵω2 .
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Problem 2. Can we consistently obtain the strong tree property at κ+ and
κ++ with κ strong limit? If so, can we bring this result down to κ = ℵω2?
How about κ = ℵω?

The answer to the first two questions is yes for the tree property. See [9]
and [11].
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[4] Franchella M., On the Origins of Dénes König’s Infinity Lemma, M. Ach. Hist.
Exact Sci., 51:3, 1997.

[5] Gitik M. and Sharon A., On SCH and the Approachability Property, Proc. Amer.
Math. Soc., 136(1):311, 2008.

[6] Kunen K. and Vaughan J., Handbook of Set-Theoretic Topology, North Holland,
1984. See Chapter 6 on Trees and Linearly Ordered Sets by Todorcevic S.

[7] Neeman I., Aronszajn Trees and the Failure of the Singular Cardinal Hypothesis, J.
Math. Log., 9:139-157, 2010.

[8] Neeman I., The tree property up to ℵω+1, J. Symb. Log., 79:429-459, 2014.
[9] Sinapova D., The Tree Property at the First and Double Successors of a Singular,
Israel J. Math., 216(2): 799-810, 2016.

[10] Sinapova D. and Unger S., Combinatorics at ℵω, Ann. of Pure and Applied
Log., 165:996-1007, 2014.

[11] Sinapova D. and Unger S., The Tree Property at ℵω2+1 and ℵω2+2

[12] Specker E., Sur un problème de Sikorski, Colloq. Math., 2:9-12, 1949.
[13] Unger S., A Model of Cummings and Foreman Revisited, Ann. of Pure and Ap-
plied Log., 165:1813-1831, 2014.

[14] Weiss C., Subtle and Ineffable Tree Properties


